Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
J Proteome Res ; 23(2): 834-843, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38252705

ABSTRACT

In shotgun proteomics, the proteome search engine analyzes mass spectra obtained by experiments, and then a peptide-spectra match (PSM) is reported for each spectrum. However, most of the PSMs identified are incorrect, and therefore various postprocessing software have been developed for reranking the peptide identifications. Yet these methods suffer from issues such as dependency on distribution, reliance on shallow models, and limited effectiveness. In this work, we propose AttnPep, a deep learning model for rescoring PSM scores that utilizes the Self-Attention module. This module helps the neural network focus on features relevant to the classification of PSMs and ignore irrelevant features. This allows AttnPep to analyze the output of different search engines and improve PSM discrimination accuracy. We considered a PSM to be correct if it achieves a q-value <0.01 and compared AttnPep with existing mainstream software PeptideProphet, Percolator, and proteoTorch. The results indicated that AttnPep found an average increase in correct PSMs of 9.29% relative to the other methods. Additionally, AttnPep was able to better distinguish between correct and incorrect PSMs and found more synthetic peptides in the complex SWATH data set.


Subject(s)
Algorithms , Deep Learning , Proteomics/methods , Tandem Mass Spectrometry/methods , Peptides , Software , Databases, Protein
3.
Comput Biol Med ; 168: 107793, 2024 01.
Article in English | MEDLINE | ID: mdl-38048661

ABSTRACT

As a prevalent RNA modification, 5-methyluridine (m5U) plays a critical role in diverse biological processes and disease pathogenesis. High-throughput identification of m5U typically relies on labor-intensive biochemical experiments using various sequencing-based techniques, which are not only time-consuming but also expensive. Consequently, there is a pressing need for more efficient and cost-effective computational methods to complement these high-throughput techniques. In this study, we present m5UMCB, a novel approach that harnesses a multi-scale convolutional neural network (CNN) in tandem with bidirectional long short-term memory (BiLSTM) to recognize m5U sites. Our method involves segmenting RNA sequences into smaller fragments based on a 3-mer length and subsequently mapping each fragment to a lower-dimensional vector representation using the global vectors for word representation (GloVe) technique. Through a series of multi-scale convolution and pooling operations, local features are extracted from RNA sequences and transformed into abstract, high-level features. The feature matrix is then inputted into a BiLSTM network, enabling the capture of contextual information and long-term dependencies within the sequence. Ultimately, a fully connected layer is employed to classify m5U sites. The validation results from 5-fold cross-validation (5-fold CV) test indicate that m5UMCB outperforms existing state-of-the-art predictive methods, demonstrating a 1.98% increase in the area under ROC curve (AUC) and significant improvements in relevant evaluation metrics. We are confident that m5UMCB will serve as a valuable tool for m5U prediction.


Subject(s)
Neural Networks, Computer , RNA , RNA/metabolism , Uridine , Protein Binding
4.
Methods ; 217: 1-9, 2023 09.
Article in English | MEDLINE | ID: mdl-37321525

ABSTRACT

Drug combination therapies are common practice in the treatment of cancer, but not all combinations result in synergy. As traditional screening approaches are restricted in their ability to uncover synergistic drug combinations, computer-aided medicine is becoming a increasingly prevalent in this field. In this work, a predictive model of potential interactions between drugs named MPFFPSDC is presented, which can maintain the symmetry of drug inputs and eliminate inconsistencies in predictive results caused by different drug inputting sequences or positions. The experimental results show that MPFFPSDC outperforms comparative models in major performance indicators and exhibits better generalization for independent data. Furthermore, the case study demonstrates that our model can capture molecular substructures that contribute to the synergistic effect of two drugs. These results indicate that MPFFPSDC not only offers strong predictive performance, but also has good model interpretability that may provide new insights for the study of drug interaction mechanisms and the development of new drugs.


Subject(s)
Neoplasms , Humans , Drug Synergism , Drug Combinations , Drug Therapy, Combination , Neoplasms/drug therapy , Drug Interactions
5.
Brief Bioinform ; 24(1)2023 01 19.
Article in English | MEDLINE | ID: mdl-36515153

ABSTRACT

Long noncoding RNA (lncRNA) is a kind of noncoding RNA with a length of more than 200 nucleotide units. Numerous research studies have proven that although lncRNAs cannot be directly translated into proteins, lncRNAs still play an important role in human growth processes by interacting with proteins. Since traditional biological experiments often require a lot of time and material costs to explore potential lncRNA-protein interactions (LPI), several computational models have been proposed for this task. In this study, we introduce a novel deep learning method known as combined graph auto-encoders (LPICGAE) to predict potential human LPIs. First, we apply a variational graph auto-encoder to learn the low dimensional representations from the high-dimensional features of lncRNAs and proteins. Then the graph auto-encoder is used to reconstruct the adjacency matrix for inferring potential interactions between lncRNAs and proteins. Finally, we minimize the loss of the two processes alternately to gain the final predicted interaction matrix. The result in 5-fold cross-validation experiments illustrates that our method achieves an average area under receiver operating characteristic curve of 0.974 and an average accuracy of 0.985, which is better than those of existing six state-of-the-art computational methods. We believe that LPICGAE can help researchers to gain more potential relationships between lncRNAs and proteins effectively.


Subject(s)
Proteins , RNA, Long Noncoding , Humans , Computational Biology/methods , Proteins/genetics , Proteins/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Deep Learning
6.
Front Psychiatry ; 13: 1017064, 2022.
Article in English | MEDLINE | ID: mdl-36620657

ABSTRACT

Introduction: Real-time evaluations of the severity of depressive symptoms are of great significance for the diagnosis and treatment of patients with major depressive disorder (MDD). In clinical practice, the evaluation approaches are mainly based on psychological scales and doctor-patient interviews, which are time-consuming and labor-intensive. Also, the accuracy of results mainly depends on the subjective judgment of the clinician. With the development of artificial intelligence (AI) technology, more and more machine learning methods are used to diagnose depression by appearance characteristics. Most of the previous research focused on the study of single-modal data; however, in recent years, many studies have shown that multi-modal data has better prediction performance than single-modal data. This study aimed to develop a measurement of depression severity from expression and action features and to assess its validity among the patients with MDD. Methods: We proposed a multi-modal deep convolutional neural network (CNN) to evaluate the severity of depressive symptoms in real-time, which was based on the detection of patients' facial expression and body movement from videos captured by ordinary cameras. We established behavioral depression degree (BDD) metrics, which combines expression entropy and action entropy to measure the depression severity of MDD patients. Results: We found that the information extracted from different modes, when integrated in appropriate proportions, can significantly improve the accuracy of the evaluation, which has not been reported in previous studies. This method presented an over 74% Pearson similarity between BDD and self-rating depression scale (SDS), self-rating anxiety scale (SAS), and Hamilton depression scale (HAMD). In addition, we tracked and evaluated the changes of BDD in patients at different stages of a course of treatment and the results obtained were in agreement with the evaluation from the scales. Discussion: The BDD can effectively measure the current state of patients' depression and its changing trend according to the patient's expression and action features. Our model may provide an automatic auxiliary tool for the diagnosis and treatment of MDD.

SELECTION OF CITATIONS
SEARCH DETAIL
...